|
virtual void | MVnorm::update (const Grp &, const SigmaI &, const Grp &, const SigmaI &, const gsl_rng *)=0 |
| Gaussian likelihood, Gaussian prior. More...
|
|
virtual void | MVnorm::update (const Grp &, const SigmaI &, const Grp &, const double &, const SigmaI &, const gsl_rng *)=0 |
| Gaussian likelihood, Student- \(t\) prior. More...
|
|
virtual void | MVnorm::update (const Grp &, const Qgrp &, const SigmaI &, const Grp &, const SigmaI &, const gsl_rng *)=0 |
| Student- \(t\) likelihood, Gaussian prior. More...
|
|
virtual void | MVnorm::update (const Grp &, const Qgrp &, const SigmaI &, const Grp &, const double &, const SigmaI &, const gsl_rng *)=0 |
| Student- \(t\) likelihood, Student- \(t\) prior. More...
|
|
virtual void | Grp::update (const Grp &, const SigmaI &, const Grp &, const SigmaI &)=0 |
| Gaussian likelihood, non-zero mean Gaussian prior. More...
|
|
virtual void | Grp::update (const Grp &, const Qgrp &, const SigmaI &, const Grp &, const SigmaI &)=0 |
| Student- \(t\) likelihood, non-zero mean Gaussian prior. More...
|
|
virtual void | Grp::update (const Grp &, const SigmaI &, const Grp &, const Qgrp &, const SigmaI &)=0 |
| Gaussian likelihood, non-zero mean Student- \(t\) prior. More...
|
|
virtual void | Grp::update (const Grp &, const Qgrp &, const SigmaI &, const Grp &, const Qgrp &, const SigmaI &)=0 |
| Student- \(t\) likelihood, non-zero mean Student- \(t\) prior. More...
|
|
Student- \(t\) likelihood, non-zero mean Student- \(t\) prior.
For the relationship to work properly, the _upLevel index of the focal object has to point to the rows of the prior mean matrix. This is the matrix addressed by dMat(). The relationship to the data is dependent on the derived class.
- Parameters
-
[in] | Grp& | data |
[in] | Qgrp& | Student- \(t\) weight parameter for the data |
[in] | SigmaI& | data inverse-covariance |
[in] | Grp& | prior mean |
[in] | Qgrp& | Student- \(t\) weight parameter for the prior |
[in] | SigmaI& | prior inverse-covariance |
Implemented in MuBlk, BetaGrpPCpex, BetaGrpPEX, BetaGrpFt, MuGrpPEX, and MuGrp.
Student- \(t\) likelihood, non-zero mean Gaussian prior.
For the relationship to work properly, the _upLevel index of the focal object has to point to the rows of the prior mean matrix. This is the matrix addressed by dMat(). The relationship to the data is dependent on the derived class.
- Parameters
-
[in] | Grp& | data |
[in] | Qgrp& | Student- \(t\) weight parameter for the data |
[in] | SigmaI& | data inverse-covariance |
[in] | Grp& | prior mean |
[in] | SigmaI& | prior inverse-covariance |
Implemented in MuBlk, BetaGrpPCpex, BetaGrpPEX, BetaGrpFt, MuGrpPEX, and MuGrp.
Gaussian likelihood, non-zero mean Student- \(t\) prior.
For the relationship to work properly, the _upLevel index of the focal object has to point to the rows of the prior mean matrix. This is the matrix addressed by dMat(). The relationship to the data is dependent on the derived class.
- Parameters
-
[in] | Grp& | data |
[in] | SigmaI& | data inverse-covariance |
[in] | Grp& | prior mean |
[in] | Qgrp& | Student- \(t\) weight parameter for the prior |
[in] | SigmaI& | prior inverse-covariance |
Implemented in MuBlk, BetaGrpPCpex, BetaGrpPEX, BetaGrpFt, MuGrpPEX, and MuGrp.
Gaussian likelihood, non-zero mean Gaussian prior.
For the relationship to work properly, the _upLevel index of the focal object has to point to the rows of the prior mean matrix. This is the matrix addressed by dMat(). The relationship to the data is dependent on the derived class.
- Parameters
-
[in] | Grp& | data |
[in] | SigmaI& | data inverse-covariance |
[in] | Grp& | prior mean |
[in] | SigmaI& | prior inverse-covariance |
Implemented in MuBlk, BetaGrpPCpex, BetaGrpPEX, BetaGrpFt, MuGrpPEX, and MuGrp.