MuGen
Multitrait genetics
Functions
0-mean prior methods
Collaboration diagram for 0-mean prior methods:

Functions

virtual void MVnorm::update (const Grp &, const SigmaI &, const SigmaI &, const gsl_rng *)=0
 Gaussian likelihood, Gaussian prior. More...
 
virtual void MVnorm::update (const Grp &, const SigmaI &, const double &, const SigmaI &, const gsl_rng *)=0
 Gaussian likelihood, Student- \(t\) prior. More...
 
virtual void MVnorm::update (const Grp &, const Qgrp &, const SigmaI &, const SigmaI &, const gsl_rng *)=0
 Student- \(t\) likelihood, Gaussian prior. More...
 
virtual void MVnorm::update (const Grp &, const Qgrp &, const SigmaI &, const double &, const SigmaI &, const gsl_rng *)=0
 Student- \(t\) likelihood, Student- \(t\) prior. More...
 
virtual void Grp::update (const Grp &, const SigmaI &, const SigmaI &)=0
 Gaussian likelihood, 0-mean Gaussian prior. More...
 
virtual void Grp::update (const Grp &, const Qgrp &, const SigmaI &, const SigmaI &)=0
 Student- \(t\) likelihood, 0-mean Gaussian prior. More...
 
virtual void Grp::update (const Grp &, const SigmaI &, const Qgrp &, const SigmaI &)=0
 Gaussian likelihood, 0-mean Student- \(t\) prior. More...
 
virtual void Grp::update (const Grp &, const Qgrp &, const SigmaI &, const Qgrp &, const SigmaI &)=0
 Student- \(t\) likelihood, 0-mean Student- \(t\) prior. More...
 

Detailed Description

Function Documentation

◆ update() [1/8]

virtual void MVnorm::update ( const Grp ,
const Qgrp ,
const SigmaI ,
const double &  ,
const SigmaI ,
const gsl_rng *   
)
pure virtual

Student- \(t\) likelihood, Student- \(t\) prior.

Parameters
[in]Grp&data for the likelihood
[in]Qgrp&vector Student- \(t\) covariance scale parameter for the likelihood covariance
[in]SigmaI&inverse-covariance matrix for the likelihood
[in]double&Student- \(t\) scale parameter for the prior covariance
[in]SigmaI&prior inverse-covariance matrix
[in]gsl_rng*pointer to a PNG

Implemented in MVnormBetaFt, MVnormMuBlk, MVnormBetaPEX, MVnormMuPEX, MVnormMu, MVnormBetaFtBlk, MVnormBetaBlk, and MVnormBeta.

◆ update() [2/8]

virtual void Grp::update ( const Grp ,
const Qgrp ,
const SigmaI ,
const Qgrp ,
const SigmaI  
)
pure virtual

Student- \(t\) likelihood, 0-mean Student- \(t\) prior.

Parameters
[in]Grp&data
[in]Qgrp&Student- \(t\) weight parameter for the data
[in]SigmaI&data inverse-covariance
[in]Qgrp&Student- \(t\) weight parameter for the prior
[in]SigmaI&prior inverse-covariance

Implemented in MuBlk, BetaGrpPCpex, BetaGrpPEX, BetaGrpFt, MuGrpPEX, and MuGrp.

◆ update() [3/8]

virtual void Grp::update ( const Grp ,
const Qgrp ,
const SigmaI ,
const SigmaI  
)
pure virtual

Student- \(t\) likelihood, 0-mean Gaussian prior.

Parameters
[in]Grp&data
[in]Qgrp&Student- \(t\) weight parameter for data
[in]SigmaI&data inverse-covariance
[in]SigmaI&prior inverse-covariance

Implemented in MuBlk, BetaGrpPCpex, BetaGrpPEX, BetaGrpFt, MuGrpPEX, and MuGrp.

◆ update() [4/8]

virtual void MVnorm::update ( const Grp ,
const Qgrp ,
const SigmaI ,
const SigmaI ,
const gsl_rng *   
)
pure virtual

Student- \(t\) likelihood, Gaussian prior.

Parameters
[in]Grp&data for the likelihood
[in]Qgrp&vector of Student- \(t\) covariance scale parameters for the likelihood covariance
[in]SigmaI&inverse-covariance matrix for the likelihood
[in]SigmaI&prior inverse-covariance matrix
[in]gsl_rng*pointer to a PNG

Implemented in MVnormBetaFt, MVnormMuBlk, MVnormBetaPEX, MVnormMuPEX, MVnormMu, MVnormBetaFtBlk, MVnormBetaBlk, and MVnormBeta.

◆ update() [5/8]

virtual void MVnorm::update ( const Grp ,
const SigmaI ,
const double &  ,
const SigmaI ,
const gsl_rng *   
)
pure virtual

Gaussian likelihood, Student- \(t\) prior.

Parameters
[in]Grp&data for the likelihood
[in]SigmaI&inverse-covariance matrix for the likelihood
[in]double&Student- \(t\) scale parameter for the prior covariance
[in]SigmaI&prior inverse-covariance matrix
[in]gsl_rng*pointer to a PNG

Implemented in MVnormBetaFt, MVnormMuBlk, MVnormBetaPEX, MVnormMuPEX, MVnormMu, MVnormBetaFtBlk, MVnormBetaBlk, and MVnormBeta.

◆ update() [6/8]

virtual void Grp::update ( const Grp ,
const SigmaI ,
const Qgrp ,
const SigmaI  
)
pure virtual

Gaussian likelihood, 0-mean Student- \(t\) prior.

Parameters
[in]Grp&data
[in]SigmaI&data inverse-covariance
[in]Qgrp&Student- \(t\) weight parameter for the prior
[in]SigmaI&prior inverse-covariance

Implemented in MuBlk, BetaGrpPCpex, BetaGrpPEX, BetaGrpFt, MuGrpPEX, and MuGrp.

◆ update() [7/8]

virtual void Grp::update ( const Grp ,
const SigmaI ,
const SigmaI  
)
pure virtual

Gaussian likelihood, 0-mean Gaussian prior.

Parameters
[in]Grp&data
[in]SigmaI&data inverse-covariance
[in]SigmaI&prior inverse-covariance

Implemented in MuGrpMiss, MuBlk, BetaGrpPCpex, BetaGrpPEX, BetaGrpFt, MuGrpPEX, and MuGrp.

◆ update() [8/8]

virtual void MVnorm::update ( const Grp ,
const SigmaI ,
const SigmaI ,
const gsl_rng *   
)
pure virtual

Gaussian likelihood, Gaussian prior.

Parameters
[in]Grp&data for the likelihood
[in]SigmaI&inverse-covariance matrix for the likelihood
[in]SigmaI&prior inverse-covariance matrix
[in]gsl_rng*pointer to a PNG

Implemented in MVnormBetaFt, MVnormMuMiss, MVnormMuBlk, MVnormBetaPEX, MVnormMuPEX, MVnormMu, MVnormBetaFtBlk, MVnormBetaBlk, and MVnormBeta.