Bayesian variable selection regression. More...
#include <MuGen.h>
Public Member Functions | |
BetaGrpBVSR () | |
Default constructor. | |
BetaGrpBVSR (const Grp &y, const SigmaI &SigI, const string &predFlNam, const double &Nmul, const double &rSqMax, RanIndex &up, const string &outFlNam, const int &nThr) | |
Basic constructor. More... | |
BetaGrpBVSR (const Grp &y, const SigmaI &SigI, const string &predFlNam, const double &Nmul, const double &rSqMax, RanIndex &low, RanIndex &up, const string &outFlNam, const int &nThr) | |
Basic constructor with replication. More... | |
BetaGrpBVSR (const Grp &y, const SigmaI &SigI, const string &predFlNam, const double &Nmul, const double &rSqMax, const double &absLab, RanIndex &up, const string &outFlNam, const int &nThr) | |
Basic constructor with missing data. More... | |
BetaGrpBVSR (const Grp &y, const SigmaI &SigI, const string &predFlNam, const double &Nmul, const double &rSqMax, const double &absLab, RanIndex &low, RanIndex &up, const string &outFlNam, const int &nThr) | |
Basic constructor with replication and missing data. More... | |
~BetaGrpBVSR () | |
Destructor. | |
void | save (const SigmaI &SigI) |
Regression value store. More... | |
![]() | |
BetaGrpFt () | |
Default constructor. | |
BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, const int &nThr) | |
Simple constructor. More... | |
BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, RanIndex &up, const int &nThr) | |
Simple constructor with a prior index. More... | |
BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, RanIndex &low, RanIndex &up, const int &nThr) | |
Simple constructor with a prior index and replication. More... | |
BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, const string &outFlNam, const int &nThr) | |
Simple constructor with output file name. More... | |
BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, RanIndex &up, const string &outFlNam, const int &nThr) | |
Simple constructor with a prior index and output file name. More... | |
BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, RanIndex &low, RanIndex &up, const string &outFlNam, const int &nThr) | |
Simple constructor with a prior index, replication and output file name. More... | |
BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, const double &absLab, const int &nThr) | |
Missing data constructor. More... | |
BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, const double &absLab, RanIndex &up, const int &nThr) | |
Missing data constructor with a prior index. More... | |
BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, const double &absLab, RanIndex &low, RanIndex &up, const int &nThr) | |
Missing data constructor with a prior index and replication. More... | |
BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, const double &absLab, const string &outFlNam, const int &nThr) | |
Missing data constructor with output file name. More... | |
BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, const double &absLab, RanIndex &up, const string &outFlNam, const int &nThr) | |
Missing data constructor with a prior index and output file name. More... | |
BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, const double &absLab, RanIndex &low, RanIndex &up, const string &outFlNam, const int &nThr) | |
Missing data constructor with a prior index, replication and output file name. More... | |
BetaGrpFt (const Grp &rsp, const SigmaI &SigI, const string &predFlNam, const size_t &Npred, const double &Nmul, const double &rSqMax, RanIndex &up, const string &outFlNam, const int &nThr) | |
Selection constructor. More... | |
BetaGrpFt (const Grp &rsp, const SigmaI &SigI, const string &predFlNam, const size_t &Npred, const double &Nmul, const double &rSqMax, RanIndex &low, RanIndex &up, const string &outFlNam, const int &nThr) | |
Selection constructor with replication. More... | |
BetaGrpFt (const Grp &rsp, const SigmaI &SigI, const string &predFlNam, const size_t &Npred, const double &Nmul, const double &rSqMax, const double &absLab, RanIndex &up, const string &outFlNam, const int &nThr) | |
Selection constructor with missing predictor data. More... | |
BetaGrpFt (const Grp &rsp, const SigmaI &SigI, const string &predFlNam, const size_t &Npred, const double &Nmul, const double &rSqMax, const double &absLab, RanIndex &low, RanIndex &up, const string &outFlNam, const int &nThr) | |
Selection constructor with missing predictor data and replication. More... | |
virtual | ~BetaGrpFt () |
Destructor. | |
BetaGrpFt (const BetaGrpFt &mG) | |
Copy constructor. More... | |
BetaGrpFt & | operator= (const BetaGrpFt &mG) |
Assignment operator. More... | |
virtual const gsl_matrix * | fMat () const |
Access to the fitted value matrix. More... | |
void | dump () |
Dump to a file. More... | |
double | lnOddsRat (const Grp &y, const SigmaI &SigI, const size_t i) const |
Log-odds ratio. More... | |
void | update (const Grp &dat, const SigmaI &SigIm) |
Gaussian likelihood, improper prior. More... | |
void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm) |
Student- t likelihood, improper prior. More... | |
virtual void | update (const Grp &dat, const SigmaI &SigIm, const SigmaI &SigIp) |
Gaussian likelihood, 0-mean Gaussian prior. More... | |
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const SigmaI &SigIp) |
Student- t likelihood, 0-mean Gaussian prior. More... | |
virtual void | update (const Grp &dat, const SigmaI &SigIm, const Qgrp &qPr, const SigmaI &SigIp) |
Gaussian likelihood, 0-mean Student- t prior. More... | |
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const Qgrp &qPr, const SigmaI &SigIp) |
Student- t likelihood, 0-mean Student- t prior. More... | |
virtual void | update (const Grp &dat, const SigmaI &SigIm, const Grp &muPr, const SigmaI &SigIp) |
Gaussian likelihood, non-zero mean Gaussian prior. More... | |
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const Grp &muPr, const SigmaI &SigIp) |
Student- t likelihood, non-zero mean Gaussian prior. More... | |
virtual void | update (const Grp &dat, const SigmaI &SigIm, const Grp &muPr, const Qgrp &qPr, const SigmaI &SigIp) |
Gaussian likelihood, non-zero mean Student- t prior. More... | |
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const Grp &muPr, const Qgrp &qPr, const SigmaI &SigIp) |
Student- t likelihood, non-zero mean Student- t prior. More... | |
![]() | |
virtual | ~Grp () |
Destructor. | |
virtual void | save () |
Save to pre-specified file. More... | |
virtual void | save (const string &outFlNam) |
Save to file. More... | |
virtual void | save (const string &outMuFlNam, const string &outSigFlNam, const SigmaI &SigI) |
Joint save. More... | |
virtual void | save (const Grp &y, const SigmaI &SigI) |
Save with data and inverse-covariance. More... | |
void | mhlSave (const string &outFlNam, const SigmaI SigI) |
Save Mahalanobis distance. More... | |
const vector< MVnorm * > & | dataVec () const |
Get vector of row pointers. More... | |
virtual const gsl_matrix * | dMat () const |
Access the value matrix. More... | |
const size_t | Ndata () const |
Get number of rows. More... | |
const size_t | phenD () const |
Get number of traits. More... | |
const MVnorm * | operator[] (const size_t i) const |
Subscript operator. More... | |
MVnorm * | operator[] (const size_t i) |
Subscript operator. More... | |
virtual MuGrp | mean (RanIndex &grp) |
Group mean. More... | |
virtual const MuGrp | mean (RanIndex &grp) const |
Group mean. More... | |
virtual MuGrp | mean (RanIndex &grp, const Qgrp &q) |
Group weighted mean. More... | |
virtual const MuGrp | mean (RanIndex &grp, const Qgrp &q) const |
Group weighted mean. More... | |
void | center () |
Center the value matrix. More... | |
Protected Member Functions | |
void | _updateFitted () |
Update fitted values. | |
void | _ldToss (const gsl_vector *var, const gsl_permutation *prm, const double &rSqMax, const size_t &Nsel, const size_t &Npck, vector< vector< size_t > > &idx, vector< vector< size_t > > &rLd, gsl_matrix *Xpck) |
Testing candidates for correlation. More... | |
double | _MGkernel (const Grp &dat, const SigmaI &SigI) const |
Gaussian kernel. More... | |
double | _MGkernel (const Grp &dat, const SigmaI &SigI, const size_t &prInd) const |
Gaussian kernel dropping one predictor. More... | |
double | _MGkernel (const Grp &dat, const SigmaI &SigIe, const SigmaI &SigIpr, const size_t &prInd) |
Gaussian kernel adding one predictor. More... | |
![]() | |
void | _rankPred (const gsl_matrix *y, const SigmaI &SigI, gsl_vector *XtX, gsl_permutation *prm) |
Rank predictors. More... | |
void | _rankPred (const gsl_matrix *y, const SigmaI &SigI, const double &absLab, gsl_vector *XtX, gsl_permutation *prm) |
Rank predictors with missing data. More... | |
void | _ldToss (const gsl_vector *var, const gsl_permutation *prm, const double &rSqMax, const size_t &Npck, vector< vector< size_t > > &idx, vector< vector< size_t > > &rLd, gsl_matrix *Xpck) |
Testing candidates for correlation. More... | |
![]() | |
Grp () | |
Protected Attributes | |
gsl_matrix * | _selB |
Matrix of selected predictors. More... | |
gsl_matrix * | _tmpXb |
\boldsymbol{\mathrm{x}}_{\cdot l}\boldsymbol{\beta}_{l \cdot} matrix for the candidate dropped/added element | |
![]() | |
vector< vector< double > > | _fittedEach |
Partial fitted value matrices. More... | |
gsl_matrix * | _fittedAll |
Matrix of fitted values. More... | |
gsl_matrix * | _valueSum |
Sample storage matrix. More... | |
gsl_matrix * | _Xmat |
Predictor matrix. More... | |
int | _nThr |
Number of threads. | |
double | _numSaves |
Number of saves. More... | |
![]() | |
vector< MVnorm * > | _theta |
Vector of pointers to value rows. More... | |
gsl_matrix * | _valueMat |
Value matrix. More... | |
RanIndex * | _lowLevel |
Lower level index. More... | |
RanIndex * | _upLevel |
Upper level index. More... | |
vector< gsl_rng * > | _rV |
Vector of PNG pointers. More... | |
string | _outFlNam |
Name of the output file. | |
Friends | |
void | RanIndexVS::update (const Grp &, const SigmaI &, BetaGrpBVSR *, const SigmaI &) |
Bayesian variable selection regression.
A multivariate implementation of Bayesian variable selection regression (BVSR), together with the RanIndexVS class. The model is similar to that described in [guan11] , but unlike their method a pre-selection of predictors based on a first-pass single-predictor regression is made. The user has control over the number of predictors to choose, and the cut-off for correlation among predictors (which arises as linkage disequilibrium in SNP regressions). This numebr is expressed as a multiple of genetic sample size. Once the pre-selected group of predictors is formed, variable selection is performed within the smaller group. Predictors discarded for correlation with picked variables are assigned the same probability of retention in the model as their corresponding picked predictors. Rao-Blackwellised values of regression coefficients are saved by the dump() function.
BetaGrpBVSR::BetaGrpBVSR | ( | const Grp & | y, |
const SigmaI & | SigI, | ||
const string & | predFlNam, | ||
const double & | Nmul, | ||
const double & | rSqMax, | ||
RanIndex & | up, | ||
const string & | outFlNam, | ||
const int & | nThr | ||
) |
Basic constructor.
Constructor with no missing data in predictors and no replication. Performs the initial pre-selection of predictors.
[in] | Grp& | data |
[in] | SigmaI& | data inverse-covariance |
[in] | string& | preddictor file name |
[in] | double& | number of predictors to keep, in multiples of sample size |
[in] | double& | r^2 cut-off for predictor correlation |
[in] | RanIndex& | prior index |
[in] | string& | output file name |
[in] | int& | number of threads |
BetaGrpBVSR::BetaGrpBVSR | ( | const Grp & | y, |
const SigmaI & | SigI, | ||
const string & | predFlNam, | ||
const double & | Nmul, | ||
const double & | rSqMax, | ||
RanIndex & | low, | ||
RanIndex & | up, | ||
const string & | outFlNam, | ||
const int & | nThr | ||
) |
Basic constructor with replication.
Constructor with no missing data in predictors and replication. A RanIndex index is used instead of a design matrix. Performs the initial pre-selection of predictors.
[in] | Grp& | data |
[in] | SigmaI& | data inverse-covariance |
[in] | string& | preddictor file name |
[in] | double& | number of predictors to keep, in multiples of sample size |
[in] | double& | r^2 cut-off for predictor correlation |
[in] | RanIndex& | replicate (data) index |
[in] | RanIndex& | prior index |
[in] | string& | output file name |
[in] | int& | number of threads |
BetaGrpBVSR::BetaGrpBVSR | ( | const Grp & | y, |
const SigmaI & | SigI, | ||
const string & | predFlNam, | ||
const double & | Nmul, | ||
const double & | rSqMax, | ||
const double & | absLab, | ||
RanIndex & | up, | ||
const string & | outFlNam, | ||
const int & | nThr | ||
) |
Basic constructor with missing data.
Constructor with missing data in predictors and no replication. Missing data in the selected predictors are filled in using mean imputation. Performs the initial pre-selection of predictors.
[in] | Grp& | data |
[in] | SigmaI& | data inverse-covariance |
[in] | string& | preddictor file name |
[in] | double& | number of predictors to keep, in multiples of sample size |
[in] | double& | r^2 cut-off for predictor correlation |
[in] | double& | missing data label |
[in] | RanIndex& | prior index |
[in] | string& | output file name |
[in] | int& | number of threads |
BetaGrpBVSR::BetaGrpBVSR | ( | const Grp & | y, |
const SigmaI & | SigI, | ||
const string & | predFlNam, | ||
const double & | Nmul, | ||
const double & | rSqMax, | ||
const double & | absLab, | ||
RanIndex & | low, | ||
RanIndex & | up, | ||
const string & | outFlNam, | ||
const int & | nThr | ||
) |
Basic constructor with replication and missing data.
Constructor with missing data in predictors and replication. Missing data in the selected predictors are filled in using mean imputation. A RanIndex index is used instead of a design matrix. Performs the initial pre-selection of predictors.
[in] | Grp& | data |
[in] | SigmaI& | data inverse-covariance |
[in] | string& | preddictor file name |
[in] | double& | number of predictors to keep, in multiples of sample size |
[in] | double& | r^2 cut-off for predictor correlation |
[in] | double& | missing data label |
[in] | RanIndex& | replicate (data) index |
[in] | RanIndex& | prior index |
[in] | string& | output file name |
[in] | int& | number of threads |
|
protected |
Testing candidates for correlation.
Goes through the list of "top" predictors and eliminates lower-ranked candidates correlated with them. If any candidates are eliminated, the list of top predictors is augmented with predictors previously discarded. The identity of the predictors eliminated for correlation is saved. The correlation among predictors arises, for example, when estimating SNP effect in genetics (GWAS).
[in] | gsl_vector* | \left( \boldsymbol{x}^T\boldsymbol{x} \right)^{-1} |
[in] | gsl_permutation* | predictor ranks |
[in] | double& | r^2 cut-off |
[in] | size_t& | number of predictors to pick |
[out] | vector< | vector<size_t> >& index of picked predictors |
[out] | vector< | vector<size_t> >& index relating dropped correlated predictors to their group-defining predictor |
[out] | gsl_matrix* | matrix of picked predictor values |
Gaussian kernel.
Calculates the multivariate Gaussian kernel value for all regression coefficients in the model.
[in] | Grp& | data |
[in] | SigmaI& | inverse-covariance |
Reimplemented from BetaGrpFt.
|
protectedvirtual |
Gaussian kernel dropping one predictor.
Calculates the multivariate Gaussian kernel value for all regression coefficients in the model, except for the one indicated.
[in] | Grp& | data |
[in] | SigmaI& | inverse-covariance |
[in] | size_t& | index of the dropped predictor |
Reimplemented from BetaGrpFt.
|
protected |
Gaussian kernel adding one predictor.
Calculates the multivariate Gaussian kernel value for all regression coefficients in the model, plus the indicated extra predictor with a Gaussian zero-mean prior.
[in] | Grp& | data |
[in] | SigmaI& | data inverse-covariance |
[in] | SigmaI& | prior inverse-covariance |
[in] | size_t& | index of the dropped predictor |
|
virtual |
|
protected |
Matrix of selected predictors.
Contains only the predictors currently in the model.