|
| BetaGrpBVSR () |
| Default constructor.
|
|
| BetaGrpBVSR (const Grp &y, const SigmaI &SigI, const string &predFlNam, const double &Nmul, const double &rSqMax, RanIndex &up, const string &outFlNam, const int &nThr) |
| Basic constructor. More...
|
|
| BetaGrpBVSR (const Grp &y, const SigmaI &SigI, const string &predFlNam, const double &Nmul, const double &rSqMax, RanIndex &low, RanIndex &up, const string &outFlNam, const int &nThr) |
| Basic constructor with replication. More...
|
|
| BetaGrpBVSR (const Grp &y, const SigmaI &SigI, const string &predFlNam, const double &Nmul, const double &rSqMax, const double &absLab, RanIndex &up, const string &outFlNam, const int &nThr) |
| Basic constructor with missing data. More...
|
|
| BetaGrpBVSR (const Grp &y, const SigmaI &SigI, const string &predFlNam, const double &Nmul, const double &rSqMax, const double &absLab, RanIndex &low, RanIndex &up, const string &outFlNam, const int &nThr) |
| Basic constructor with replication and missing data. More...
|
|
| ~BetaGrpBVSR () |
| Destructor.
|
|
void | save (const SigmaI &SigI) |
| Regression value store. More...
|
|
| BetaGrpFt () |
| Default constructor.
|
|
| BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, const int &nThr) |
| Simple constructor. More...
|
|
| BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, RanIndex &up, const int &nThr) |
| Simple constructor with a prior index. More...
|
|
| BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, RanIndex &low, RanIndex &up, const int &nThr) |
| Simple constructor with a prior index and replication. More...
|
|
| BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, const string &outFlNam, const int &nThr) |
| Simple constructor with output file name. More...
|
|
| BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, RanIndex &up, const string &outFlNam, const int &nThr) |
| Simple constructor with a prior index and output file name. More...
|
|
| BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, RanIndex &low, RanIndex &up, const string &outFlNam, const int &nThr) |
| Simple constructor with a prior index, replication and output file name. More...
|
|
| BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, const double &absLab, const int &nThr) |
| Missing data constructor. More...
|
|
| BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, const double &absLab, RanIndex &up, const int &nThr) |
| Missing data constructor with a prior index. More...
|
|
| BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, const double &absLab, RanIndex &low, RanIndex &up, const int &nThr) |
| Missing data constructor with a prior index and replication. More...
|
|
| BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, const double &absLab, const string &outFlNam, const int &nThr) |
| Missing data constructor with output file name. More...
|
|
| BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, const double &absLab, RanIndex &up, const string &outFlNam, const int &nThr) |
| Missing data constructor with a prior index and output file name. More...
|
|
| BetaGrpFt (const Grp &rsp, const string &predFlNam, const size_t &Npred, const double &absLab, RanIndex &low, RanIndex &up, const string &outFlNam, const int &nThr) |
| Missing data constructor with a prior index, replication and output file name. More...
|
|
| BetaGrpFt (const Grp &rsp, const SigmaI &SigI, const string &predFlNam, const size_t &Npred, const double &Nmul, const double &rSqMax, RanIndex &up, const string &outFlNam, const int &nThr) |
| Selection constructor. More...
|
|
| BetaGrpFt (const Grp &rsp, const SigmaI &SigI, const string &predFlNam, const size_t &Npred, const double &Nmul, const double &rSqMax, RanIndex &low, RanIndex &up, const string &outFlNam, const int &nThr) |
| Selection constructor with replication. More...
|
|
| BetaGrpFt (const Grp &rsp, const SigmaI &SigI, const string &predFlNam, const size_t &Npred, const double &Nmul, const double &rSqMax, const double &absLab, RanIndex &up, const string &outFlNam, const int &nThr) |
| Selection constructor with missing predictor data. More...
|
|
| BetaGrpFt (const Grp &rsp, const SigmaI &SigI, const string &predFlNam, const size_t &Npred, const double &Nmul, const double &rSqMax, const double &absLab, RanIndex &low, RanIndex &up, const string &outFlNam, const int &nThr) |
| Selection constructor with missing predictor data and replication. More...
|
|
virtual | ~BetaGrpFt () |
| Destructor.
|
|
| BetaGrpFt (const BetaGrpFt &mG) |
| Copy constructor. More...
|
|
BetaGrpFt & | operator= (const BetaGrpFt &mG) |
| Assignment operator. More...
|
|
virtual const gsl_matrix * | fMat () const |
| Access to the fitted value matrix. More...
|
|
void | dump () |
| Dump to a file. More...
|
|
double | lnOddsRat (const Grp &y, const SigmaI &SigI, const size_t i) const |
| Log-odds ratio. More...
|
|
void | update (const Grp &dat, const SigmaI &SigIm) |
| Gaussian likelihood, improper prior. More...
|
|
void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm) |
| Student- \(t\) likelihood, improper prior. More...
|
|
virtual void | update (const Grp &dat, const SigmaI &SigIm, const SigmaI &SigIp) |
| Gaussian likelihood, 0-mean Gaussian prior. More...
|
|
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const SigmaI &SigIp) |
| Student- \(t\) likelihood, 0-mean Gaussian prior. More...
|
|
virtual void | update (const Grp &dat, const SigmaI &SigIm, const Qgrp &qPr, const SigmaI &SigIp) |
| Gaussian likelihood, 0-mean Student- \(t\) prior. More...
|
|
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const Qgrp &qPr, const SigmaI &SigIp) |
| Student- \(t\) likelihood, 0-mean Student- \(t\) prior. More...
|
|
virtual void | update (const Grp &dat, const SigmaI &SigIm, const Grp &muPr, const SigmaI &SigIp) |
| Gaussian likelihood, non-zero mean Gaussian prior. More...
|
|
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const Grp &muPr, const SigmaI &SigIp) |
| Student- \(t\) likelihood, non-zero mean Gaussian prior. More...
|
|
virtual void | update (const Grp &dat, const SigmaI &SigIm, const Grp &muPr, const Qgrp &qPr, const SigmaI &SigIp) |
| Gaussian likelihood, non-zero mean Student- \(t\) prior. More...
|
|
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const Grp &muPr, const Qgrp &qPr, const SigmaI &SigIp) |
| Student- \(t\) likelihood, non-zero mean Student- \(t\) prior. More...
|
|
virtual | ~Grp () |
| Destructor.
|
|
virtual void | save () |
| Save to pre-specified file. More...
|
|
virtual void | save (const string &outFlNam) |
| Save to file. More...
|
|
virtual void | save (const string &outMuFlNam, const string &outSigFlNam, const SigmaI &SigI) |
| Joint save. More...
|
|
virtual void | save (const Grp &y, const SigmaI &SigI) |
| Save with data and inverse-covariance. More...
|
|
void | mhlSave (const string &outFlNam, const SigmaI SigI) |
| Save Mahalanobis distance. More...
|
|
const vector< MVnorm * > & | dataVec () const |
| Get vector of row pointers. More...
|
|
virtual const gsl_matrix * | dMat () const |
| Access the value matrix. More...
|
|
const size_t | Ndata () const |
| Get number of rows. More...
|
|
const size_t | phenD () const |
| Get number of traits. More...
|
|
const MVnorm * | operator[] (const size_t i) const |
| Subscript operator. More...
|
|
MVnorm * | operator[] (const size_t i) |
| Subscript operator. More...
|
|
virtual MuGrp | mean (RanIndex &grp) |
| Group mean. More...
|
|
virtual const MuGrp | mean (RanIndex &grp) const |
| Group mean. More...
|
|
virtual MuGrp | mean (RanIndex &grp, const Qgrp &q) |
| Group weighted mean. More...
|
|
virtual const MuGrp | mean (RanIndex &grp, const Qgrp &q) const |
| Group weighted mean. More...
|
|
void | center () |
| Center the value matrix. More...
|
|
Bayesian variable selection regression.
A multivariate implementation of Bayesian variable selection regression (BVSR), together with the RanIndexVS class. The model is similar to that described in [guan11] , but unlike their method a pre-selection of predictors based on a first-pass single-predictor regression is made. The user has control over the number of predictors to choose, and the cut-off for correlation among predictors (which arises as linkage disequilibrium in SNP regressions). This numebr is expressed as a multiple of genetic sample size. Once the pre-selected group of predictors is formed, variable selection is performed within the smaller group. Predictors discarded for correlation with picked variables are assigned the same probability of retention in the model as their corresponding picked predictors. Rao-Blackwellised values of regression coefficients are saved by the dump() function.
- Warning
- This class is experimental and has not been extensively tested