MuGen
Multitrait genetics
Classes
Groups of location parameters

Classes

class  Grp
 Base location parameter group class. More...
 
class  MuGrp
 Hierarchical mean. More...
 
class  MuGrpPEX
 "Random effect" with parameter expansion More...
 
class  MuGrpMiss
 Data with missing phenotype values. More...
 
class  MuGrpEE
 Data with measurement error. More...
 
class  MuGrpEEmiss
 Data with measurement error and missing phenotypes. More...
 
class  BetaGrpFt
 Multivariate multiple regression. More...
 
class  BetaGrpPEX
 Multivariate multiple regression with parameter expansion. More...
 
class  BetaGrpPC
 Relationship matrix regression. More...
 
class  BetaGrpPCpex
 Multiplicative parameter expansion for PC regression. More...
 
class  BetaGrpSnp
 Simple single-SNP regression class. More...
 
class  BetaGrpSnpCV
 Single-SNP regression with conditional variance. More...
 
class  BetaGrpPSR
 Single-SNP regression with partial effects. More...
 
class  BetaGrpSnpMiss
 Simple single-SNP regression class with missing data. More...
 
class  BetaGrpSnpMissCV
 Single-SNP regression with conditional variance and missing data. More...
 
class  BetaGrpPSRmiss
 Single-SNP regression with partial effects and missing data. More...
 
class  BetaGrpBVSR
 Bayesian variable selection regression. More...
 
class  MuBlk
 Hierarchical mean with independent blocks of traits. More...
 
class  BetaBlk
 Regression with independent blocks of traits. More...
 

Detailed Description

Location parameters grouped by common modeling features. They have common priors, common data and prior covariances, and if they are regression coefficients a common set of predictors. Values are stored in a matrix with the columns representing traits (or analogous parameters) and rows – individual location parameters. The latter are targets of MVnorm classes and are typically modified in Markov chains through update functions implemented in these individual-row objects.