|
|
| BetaGrpPSR () |
| | Default constructor.
|
| |
| | BetaGrpPSR (const string &predFlNam, const string &outFlNam, const size_t &Ndat, const size_t &Npred, const size_t &d, const int &Nthr) |
| | Constructor with no replication and \(p\)-values. More...
|
| |
| | BetaGrpPSR (const string &predFlNam, const string &outFlNam, RanIndex &low, const size_t &Npred, const size_t &d, const int &Nthr) |
| | Constructor with replication and \(p\)-values. More...
|
| |
| | BetaGrpPSR (const string &predFlNam, const string &outFlNam, const size_t &Ndat, const size_t &Npred, const size_t &d, const int &Nthr, const double &prVar) |
| | Constructor with no replication and ABF. More...
|
| |
| | BetaGrpPSR (const string &predFlNam, const string &outFlNam, RanIndex &low, const size_t &Npred, const size_t &d, const int &Nthr, const double &prVar) |
| | Constructor with replication and ABF. More...
|
| |
|
| ~BetaGrpPSR () |
| | Destructor.
|
| |
| | BetaGrpPSR (const BetaGrpPSR &mG) |
| | Copy constructor. More...
|
| |
| BetaGrpPSR & | operator= (const BetaGrpPSR &mG) |
| | Assignment operator. More...
|
| |
| void | dump () |
| | Dump results to the output file. More...
|
| |
|
| BetaGrpSnp () |
| | Default constructor.
|
| |
| | BetaGrpSnp (const string &predFlNam, const string &outFlNam, const size_t &Ndat, const size_t &Npred, const size_t &d, const int &Nthr) |
| | Constructor with no replication and \(p\)-values. More...
|
| |
| | BetaGrpSnp (const string &predFlNam, const string &outFlNam, RanIndex &low, const size_t &Npred, const size_t &d, const int &Nthr) |
| | Constructor with replication and \(p\)-values. More...
|
| |
| | BetaGrpSnp (const string &predFlNam, const string &outFlNam, const size_t &Ndat, const size_t &Npred, const size_t &d, const int &Nthr, const double &prVar) |
| | Constructor with no replication and ABF. More...
|
| |
| | BetaGrpSnp (const string &predFlNam, const string &outFlNam, RanIndex &low, const size_t &Npred, const size_t &d, const int &Nthr, const double &prVar) |
| | Constructor with replication and ABF. More...
|
| |
|
| ~BetaGrpSnp () |
| | Destructor.
|
| |
| | BetaGrpSnp (const BetaGrpSnp &mG) |
| | Copy constructor. More...
|
| |
| BetaGrpSnp & | operator= (const BetaGrpSnp &mG) |
| | Assignment operator. More...
|
| |
| const gsl_matrix * | fMat () const |
| | Access adjusted fitted value matrix. More...
|
| |
| void | update (const Grp &dat, const SigmaI &SigIm) |
| | Response update function. More...
|
| |
|
| MuGrp () |
| | Default constructor.
|
| |
| | MuGrp (RanIndex &low, const size_t &d) |
| | Deterministic zero-value constructor. More...
|
| |
| | MuGrp (const string &datFlNam, RanIndex &low, RanIndex &up, const size_t &d) |
| | Constructor with data from file. More...
|
| |
| | MuGrp (const string &datFlNam, RanIndex &up, const size_t &d) |
| | Constructor with data from file and no lower level. More...
|
| |
| | MuGrp (const vector< MVnorm * > &dat, RanIndex &low, RanIndex &up) |
| | Constructor with a vector of MVnorm pointers. More...
|
| |
| | MuGrp (const Grp &dat, RanIndex &low, RanIndex &up) |
| | Constructor with a Grp object. More...
|
| |
| | MuGrp (const vector< MVnorm * > &dat, RanIndex &low, RanIndex &up, const string &outFlNam) |
| | Constructor with a vector of MVnorm pointers and output file name. More...
|
| |
| | MuGrp (const Grp &dat, RanIndex &low, RanIndex &up, const string &outFlNam) |
| | Constructor with a Grp object and output file name. More...
|
| |
| | MuGrp (const Grp &dat, RanIndex &low) |
| | Deterministic mean constructor. More...
|
| |
| | MuGrp (const Grp &dat, const Qgrp &q, RanIndex &low) |
| | Deterministic weighted mean constructor. More...
|
| |
| | MuGrp (const gsl_matrix *dat) |
| | Deterministic constructor with a GSL matrix. More...
|
| |
| | MuGrp (const gsl_matrix *dat, RanIndex &low) |
| | Deterministic GSL matrix mean constructor. More...
|
| |
| | MuGrp (const gsl_matrix *dat, const Qgrp &q, RanIndex &low) |
| | Deterministic GSL matrix weighted mean constructor. More...
|
| |
|
virtual | ~MuGrp () |
| | Destructor.
|
| |
| | MuGrp (const MuGrp &mG) |
| | Copy constructor. More...
|
| |
| | MuGrp (const Grp &g) |
| | Copy constructor. More...
|
| |
| MuGrp & | operator= (const MuGrp &mG) |
| | Assignemnt operator. More...
|
| |
| virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm) |
| | Student- \(t\) likelihood, improper prior. More...
|
| |
| virtual void | update (const Grp &dat, const SigmaI &SigIm, const SigmaI &SigIp) |
| | Gaussian likelihood, 0-mean Gaussian prior. More...
|
| |
| virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const SigmaI &SigIp) |
| | Student- \(t\) likelihood, 0-mean Gaussian prior. More...
|
| |
| virtual void | update (const Grp &dat, const SigmaI &SigIm, const Qgrp &qPr, const SigmaI &SigIp) |
| | Gaussian likelihood, 0-mean Student- \(t\) prior. More...
|
| |
| virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const Qgrp &qPr, const SigmaI &SigIp) |
| | Student- \(t\) likelihood, 0-mean Student- \(t\) prior. More...
|
| |
| virtual void | update (const Grp &dat, const SigmaI &SigIm, const Grp &muPr, const SigmaI &SigIp) |
| | Gaussian likelihood, non-zero mean Gaussian prior. More...
|
| |
| virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const Grp &muPr, const SigmaI &SigIp) |
| | Student- \(t\) likelihood, non-zero mean Gaussian prior. More...
|
| |
| virtual void | update (const Grp &dat, const SigmaI &SigIm, const Grp &muPr, const Qgrp &qPr, const SigmaI &SigIp) |
| | Gaussian likelihood, non-zero mean Student- \(t\) prior. More...
|
| |
| virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const Grp &muPr, const Qgrp &qPr, const SigmaI &SigIp) |
| | Student- \(t\) likelihood, non-zero mean Student- \(t\) prior. More...
|
| |
|
virtual | ~Grp () |
| | Destructor.
|
| |
| virtual void | save () |
| | Save to pre-specified file. More...
|
| |
| virtual void | save (const string &outFlNam) |
| | Save to file. More...
|
| |
| virtual void | save (const string &outMuFlNam, const string &outSigFlNam, const SigmaI &SigI) |
| | Joint save. More...
|
| |
| virtual void | save (const SigmaI &SigI) |
| | Save with inverse-covariance. More...
|
| |
| virtual void | save (const Grp &y, const SigmaI &SigI) |
| | Save with data and inverse-covariance. More...
|
| |
| void | mhlSave (const string &outFlNam, const SigmaI SigI) |
| | Save Mahalanobis distance. More...
|
| |
| const vector< MVnorm * > & | dataVec () const |
| | Get vector of row pointers. More...
|
| |
| virtual const gsl_matrix * | dMat () const |
| | Access the value matrix. More...
|
| |
| const size_t | Ndata () const |
| | Get number of rows. More...
|
| |
| const size_t | phenD () const |
| | Get number of traits. More...
|
| |
| virtual double | lnOddsRat (const Grp &y, const SigmaI &SigI, const size_t i) const |
| | Log-odds ratio. More...
|
| |
| const MVnorm * | operator[] (const size_t i) const |
| | Subscript operator. More...
|
| |
| MVnorm * | operator[] (const size_t i) |
| | Subscript operator. More...
|
| |
| virtual MuGrp | mean (RanIndex &grp) |
| | Group mean. More...
|
| |
| virtual const MuGrp | mean (RanIndex &grp) const |
| | Group mean. More...
|
| |
| virtual MuGrp | mean (RanIndex &grp, const Qgrp &q) |
| | Group weighted mean. More...
|
| |
| virtual const MuGrp | mean (RanIndex &grp, const Qgrp &q) const |
| | Group weighted mean. More...
|
| |
| void | center () |
| | Center the value matrix. More...
|
| |
Single-SNP regression with partial effects.
Implements single-marker GWAS. Each trait is treated as a single response, and the other traits are added to the SNP as predictors. Only the SNP test is reported. No Hotelling-type mutivariate association test is performed, so the number of columns in the results matrix is the same as the number of traits. The output is either \( -\log_{10}p \), (although this statistic is not strictly a frequentist \(p\)-value, it performs very similarly in simulations), or Wakefield's [wakefield07] approximation of \( -ln BF \) (log-Bayes factor ratio). In the latter case, the user can set the prior variance manually. The SNP regression is performed on the point estimate of a response, as described in documentation of the update() and dump() functions. The latter can be, say, a residual of a mixed-model type GEBV estimate done to control population structure.