|
| BetaGrpPSRmiss () |
| Default constructor.
|
|
| BetaGrpPSRmiss (const string &predFlNam, const string &outFlNam, const size_t &Ndat, const size_t &Npred, const size_t &d, const int &Nthr, const double &absLab) |
| Constructor with no replication and \(p\)-values. More...
|
|
| BetaGrpPSRmiss (const string &predFlNam, const string &outFlNam, RanIndex &low, const size_t &Npred, const size_t &d, const int &Nthr, const double &absLab) |
| Constructor with replication and \(p\)-values. More...
|
|
| BetaGrpPSRmiss (const string &predFlNam, const string &outFlNam, const size_t &Ndat, const size_t &Npred, const size_t &d, const int &Nthr, const double &prVar, const double &absLab) |
| Constructor with no replication and ABF. More...
|
|
| BetaGrpPSRmiss (const string &predFlNam, const string &outFlNam, RanIndex &low, const size_t &Npred, const size_t &d, const int &Nthr, const double &prVar, const double &absLab) |
| Constructor with replication and ABF. More...
|
|
| ~BetaGrpPSRmiss () |
| Destructor.
|
|
| BetaGrpPSRmiss (const BetaGrpPSRmiss &mG) |
| Copy constructor. More...
|
|
BetaGrpPSRmiss & | operator= (const BetaGrpPSRmiss &mG) |
| Assignment operator. More...
|
|
void | dump () |
| Dump results to the output file. More...
|
|
| BetaGrpSnpMiss () |
| Default constructor.
|
|
| BetaGrpSnpMiss (const string &predFlNam, const string &outFlNam, const size_t &Ndat, const size_t &Npred, const size_t &d, const int &Nthr, const double &absLab) |
| Constructor with no replication and \(p\)-values. More...
|
|
| BetaGrpSnpMiss (const string &predFlNam, const string &outFlNam, RanIndex &low, const size_t &Npred, const size_t &d, const int &Nthr, const double &absLab) |
| Constructor with replication and \(p\)-values. More...
|
|
| BetaGrpSnpMiss (const string &predFlNam, const string &outFlNam, const size_t &Ndat, const size_t &Npred, const size_t &d, const int &Nthr, const double &prVar, const double &absLab) |
| Constructor with no replication and ABF. More...
|
|
| BetaGrpSnpMiss (const string &predFlNam, const string &outFlNam, RanIndex &low, const size_t &Npred, const size_t &d, const int &Nthr, const double &prVar, const double &absLab) |
| Constructor with replication and ABF. More...
|
|
| ~BetaGrpSnpMiss () |
| Destructor.
|
|
| BetaGrpSnpMiss (const BetaGrpSnpMiss &mG) |
| Copy constructor. More...
|
|
BetaGrpSnpMiss & | operator= (const BetaGrpSnpMiss &mG) |
| Assignment operator. More...
|
|
const gsl_matrix * | fMat () const |
| Access adjusted fitted value matrix. More...
|
|
void | update (const Grp &dat, const SigmaI &SigIm) |
| Response update function. More...
|
|
| MuGrp () |
| Default constructor.
|
|
| MuGrp (RanIndex &low, const size_t &d) |
| Deterministic zero-value constructor. More...
|
|
| MuGrp (const string &datFlNam, RanIndex &low, RanIndex &up, const size_t &d) |
| Constructor with data from file. More...
|
|
| MuGrp (const string &datFlNam, RanIndex &up, const size_t &d) |
| Constructor with data from file and no lower level. More...
|
|
| MuGrp (const vector< MVnorm * > &dat, RanIndex &low, RanIndex &up) |
| Constructor with a vector of MVnorm pointers. More...
|
|
| MuGrp (const Grp &dat, RanIndex &low, RanIndex &up) |
| Constructor with a Grp object. More...
|
|
| MuGrp (const vector< MVnorm * > &dat, RanIndex &low, RanIndex &up, const string &outFlNam) |
| Constructor with a vector of MVnorm pointers and output file name. More...
|
|
| MuGrp (const Grp &dat, RanIndex &low, RanIndex &up, const string &outFlNam) |
| Constructor with a Grp object and output file name. More...
|
|
| MuGrp (const Grp &dat, RanIndex &low) |
| Deterministic mean constructor. More...
|
|
| MuGrp (const Grp &dat, const Qgrp &q, RanIndex &low) |
| Deterministic weighted mean constructor. More...
|
|
| MuGrp (const gsl_matrix *dat) |
| Deterministic constructor with a GSL matrix. More...
|
|
| MuGrp (const gsl_matrix *dat, RanIndex &low) |
| Deterministic GSL matrix mean constructor. More...
|
|
| MuGrp (const gsl_matrix *dat, const Qgrp &q, RanIndex &low) |
| Deterministic GSL matrix weighted mean constructor. More...
|
|
virtual | ~MuGrp () |
| Destructor.
|
|
| MuGrp (const MuGrp &mG) |
| Copy constructor. More...
|
|
| MuGrp (const Grp &g) |
| Copy constructor. More...
|
|
MuGrp & | operator= (const MuGrp &mG) |
| Assignemnt operator. More...
|
|
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm) |
| Student- \(t\) likelihood, improper prior. More...
|
|
virtual void | update (const Grp &dat, const SigmaI &SigIm, const SigmaI &SigIp) |
| Gaussian likelihood, 0-mean Gaussian prior. More...
|
|
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const SigmaI &SigIp) |
| Student- \(t\) likelihood, 0-mean Gaussian prior. More...
|
|
virtual void | update (const Grp &dat, const SigmaI &SigIm, const Qgrp &qPr, const SigmaI &SigIp) |
| Gaussian likelihood, 0-mean Student- \(t\) prior. More...
|
|
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const Qgrp &qPr, const SigmaI &SigIp) |
| Student- \(t\) likelihood, 0-mean Student- \(t\) prior. More...
|
|
virtual void | update (const Grp &dat, const SigmaI &SigIm, const Grp &muPr, const SigmaI &SigIp) |
| Gaussian likelihood, non-zero mean Gaussian prior. More...
|
|
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const Grp &muPr, const SigmaI &SigIp) |
| Student- \(t\) likelihood, non-zero mean Gaussian prior. More...
|
|
virtual void | update (const Grp &dat, const SigmaI &SigIm, const Grp &muPr, const Qgrp &qPr, const SigmaI &SigIp) |
| Gaussian likelihood, non-zero mean Student- \(t\) prior. More...
|
|
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const Grp &muPr, const Qgrp &qPr, const SigmaI &SigIp) |
| Student- \(t\) likelihood, non-zero mean Student- \(t\) prior. More...
|
|
virtual | ~Grp () |
| Destructor.
|
|
virtual void | save () |
| Save to pre-specified file. More...
|
|
virtual void | save (const string &outFlNam) |
| Save to file. More...
|
|
virtual void | save (const string &outMuFlNam, const string &outSigFlNam, const SigmaI &SigI) |
| Joint save. More...
|
|
virtual void | save (const SigmaI &SigI) |
| Save with inverse-covariance. More...
|
|
virtual void | save (const Grp &y, const SigmaI &SigI) |
| Save with data and inverse-covariance. More...
|
|
void | mhlSave (const string &outFlNam, const SigmaI SigI) |
| Save Mahalanobis distance. More...
|
|
const vector< MVnorm * > & | dataVec () const |
| Get vector of row pointers. More...
|
|
virtual const gsl_matrix * | dMat () const |
| Access the value matrix. More...
|
|
const size_t | Ndata () const |
| Get number of rows. More...
|
|
const size_t | phenD () const |
| Get number of traits. More...
|
|
virtual double | lnOddsRat (const Grp &y, const SigmaI &SigI, const size_t i) const |
| Log-odds ratio. More...
|
|
const MVnorm * | operator[] (const size_t i) const |
| Subscript operator. More...
|
|
MVnorm * | operator[] (const size_t i) |
| Subscript operator. More...
|
|
virtual MuGrp | mean (RanIndex &grp) |
| Group mean. More...
|
|
virtual const MuGrp | mean (RanIndex &grp) const |
| Group mean. More...
|
|
virtual MuGrp | mean (RanIndex &grp, const Qgrp &q) |
| Group weighted mean. More...
|
|
virtual const MuGrp | mean (RanIndex &grp, const Qgrp &q) const |
| Group weighted mean. More...
|
|
void | center () |
| Center the value matrix. More...
|
|
Single-SNP regression with partial effects and missing data.
Implements single-marker GWAS with missing genotype data. Rows with missing genotypes are dropped. Each trait is treated as a single response, and the other traits are added to the SNP as predictors. Only the SNP test is reported. No Hotelling-type mutivariate association test is performed, so the number of columns in the results matrix is the same as the number of traits. The output is either \( -\log_{10}p \), (although this statistic is not strictly a frequentist \(p\)-value, it performs very similarly in simulations), or Wakefield's [wakefield07] approximation of \( -ln BF \) (log-Bayes factor ratio). In the latter case, the user can set the prior variance manually. The SNP regression is performed on the point estimate of a response, as described in documentation of the update() and dump() functions. The latter can be, say, a residual of a mixed-model type GEBV estimate done to control population structure.