|
| BetaGrpSnpCV () |
| Default constructor.
|
|
| BetaGrpSnpCV (const string &predFlNam, const string &outFlNam, const size_t &Ndat, const size_t &Npred, const size_t &d, const int &Nthr) |
| Constructor with no replication and \(p\)-values. More...
|
|
| BetaGrpSnpCV (const string &predFlNam, const string &outFlNam, RanIndex &low, const size_t &Npred, const size_t &d, const int &Nthr) |
| Constructor with replication and \(p\)-values. More...
|
|
| BetaGrpSnpCV (const string &predFlNam, const string &outFlNam, const size_t &Ndat, const size_t &Npred, const size_t &d, const int &Nthr, const double &prVar) |
| Constructor with no replication and ABF. More...
|
|
| BetaGrpSnpCV (const string &predFlNam, const string &outFlNam, RanIndex &low, const size_t &Npred, const size_t &d, const int &Nthr, const double &prVar) |
| Constructor with replication and ABF. More...
|
|
| ~BetaGrpSnpCV () |
| Destructor.
|
|
| BetaGrpSnpCV (const BetaGrpSnpCV &mG) |
| Copy constructor. More...
|
|
BetaGrpSnpCV & | operator= (const BetaGrpSnpCV &mG) |
| Assignment operator. More...
|
|
void | dump () |
| Dump results to the output file. More...
|
|
| BetaGrpSnp () |
| Default constructor.
|
|
| BetaGrpSnp (const string &predFlNam, const string &outFlNam, const size_t &Ndat, const size_t &Npred, const size_t &d, const int &Nthr) |
| Constructor with no replication and \(p\)-values. More...
|
|
| BetaGrpSnp (const string &predFlNam, const string &outFlNam, RanIndex &low, const size_t &Npred, const size_t &d, const int &Nthr) |
| Constructor with replication and \(p\)-values. More...
|
|
| BetaGrpSnp (const string &predFlNam, const string &outFlNam, const size_t &Ndat, const size_t &Npred, const size_t &d, const int &Nthr, const double &prVar) |
| Constructor with no replication and ABF. More...
|
|
| BetaGrpSnp (const string &predFlNam, const string &outFlNam, RanIndex &low, const size_t &Npred, const size_t &d, const int &Nthr, const double &prVar) |
| Constructor with replication and ABF. More...
|
|
| ~BetaGrpSnp () |
| Destructor.
|
|
| BetaGrpSnp (const BetaGrpSnp &mG) |
| Copy constructor. More...
|
|
BetaGrpSnp & | operator= (const BetaGrpSnp &mG) |
| Assignment operator. More...
|
|
const gsl_matrix * | fMat () const |
| Access adjusted fitted value matrix. More...
|
|
void | update (const Grp &dat, const SigmaI &SigIm) |
| Response update function. More...
|
|
| MuGrp () |
| Default constructor.
|
|
| MuGrp (RanIndex &low, const size_t &d) |
| Deterministic zero-value constructor. More...
|
|
| MuGrp (const string &datFlNam, RanIndex &low, RanIndex &up, const size_t &d) |
| Constructor with data from file. More...
|
|
| MuGrp (const string &datFlNam, RanIndex &up, const size_t &d) |
| Constructor with data from file and no lower level. More...
|
|
| MuGrp (const vector< MVnorm * > &dat, RanIndex &low, RanIndex &up) |
| Constructor with a vector of MVnorm pointers. More...
|
|
| MuGrp (const Grp &dat, RanIndex &low, RanIndex &up) |
| Constructor with a Grp object. More...
|
|
| MuGrp (const vector< MVnorm * > &dat, RanIndex &low, RanIndex &up, const string &outFlNam) |
| Constructor with a vector of MVnorm pointers and output file name. More...
|
|
| MuGrp (const Grp &dat, RanIndex &low, RanIndex &up, const string &outFlNam) |
| Constructor with a Grp object and output file name. More...
|
|
| MuGrp (const Grp &dat, RanIndex &low) |
| Deterministic mean constructor. More...
|
|
| MuGrp (const Grp &dat, const Qgrp &q, RanIndex &low) |
| Deterministic weighted mean constructor. More...
|
|
| MuGrp (const gsl_matrix *dat) |
| Deterministic constructor with a GSL matrix. More...
|
|
| MuGrp (const gsl_matrix *dat, RanIndex &low) |
| Deterministic GSL matrix mean constructor. More...
|
|
| MuGrp (const gsl_matrix *dat, const Qgrp &q, RanIndex &low) |
| Deterministic GSL matrix weighted mean constructor. More...
|
|
virtual | ~MuGrp () |
| Destructor.
|
|
| MuGrp (const MuGrp &mG) |
| Copy constructor. More...
|
|
| MuGrp (const Grp &g) |
| Copy constructor. More...
|
|
MuGrp & | operator= (const MuGrp &mG) |
| Assignemnt operator. More...
|
|
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm) |
| Student- \(t\) likelihood, improper prior. More...
|
|
virtual void | update (const Grp &dat, const SigmaI &SigIm, const SigmaI &SigIp) |
| Gaussian likelihood, 0-mean Gaussian prior. More...
|
|
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const SigmaI &SigIp) |
| Student- \(t\) likelihood, 0-mean Gaussian prior. More...
|
|
virtual void | update (const Grp &dat, const SigmaI &SigIm, const Qgrp &qPr, const SigmaI &SigIp) |
| Gaussian likelihood, 0-mean Student- \(t\) prior. More...
|
|
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const Qgrp &qPr, const SigmaI &SigIp) |
| Student- \(t\) likelihood, 0-mean Student- \(t\) prior. More...
|
|
virtual void | update (const Grp &dat, const SigmaI &SigIm, const Grp &muPr, const SigmaI &SigIp) |
| Gaussian likelihood, non-zero mean Gaussian prior. More...
|
|
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const Grp &muPr, const SigmaI &SigIp) |
| Student- \(t\) likelihood, non-zero mean Gaussian prior. More...
|
|
virtual void | update (const Grp &dat, const SigmaI &SigIm, const Grp &muPr, const Qgrp &qPr, const SigmaI &SigIp) |
| Gaussian likelihood, non-zero mean Student- \(t\) prior. More...
|
|
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const Grp &muPr, const Qgrp &qPr, const SigmaI &SigIp) |
| Student- \(t\) likelihood, non-zero mean Student- \(t\) prior. More...
|
|
virtual | ~Grp () |
| Destructor.
|
|
virtual void | save () |
| Save to pre-specified file. More...
|
|
virtual void | save (const string &outFlNam) |
| Save to file. More...
|
|
virtual void | save (const string &outMuFlNam, const string &outSigFlNam, const SigmaI &SigI) |
| Joint save. More...
|
|
virtual void | save (const SigmaI &SigI) |
| Save with inverse-covariance. More...
|
|
virtual void | save (const Grp &y, const SigmaI &SigI) |
| Save with data and inverse-covariance. More...
|
|
void | mhlSave (const string &outFlNam, const SigmaI SigI) |
| Save Mahalanobis distance. More...
|
|
const vector< MVnorm * > & | dataVec () const |
| Get vector of row pointers. More...
|
|
virtual const gsl_matrix * | dMat () const |
| Access the value matrix. More...
|
|
const size_t | Ndata () const |
| Get number of rows. More...
|
|
const size_t | phenD () const |
| Get number of traits. More...
|
|
virtual double | lnOddsRat (const Grp &y, const SigmaI &SigI, const size_t i) const |
| Log-odds ratio. More...
|
|
const MVnorm * | operator[] (const size_t i) const |
| Subscript operator. More...
|
|
MVnorm * | operator[] (const size_t i) |
| Subscript operator. More...
|
|
virtual MuGrp | mean (RanIndex &grp) |
| Group mean. More...
|
|
virtual const MuGrp | mean (RanIndex &grp) const |
| Group mean. More...
|
|
virtual MuGrp | mean (RanIndex &grp, const Qgrp &q) |
| Group weighted mean. More...
|
|
virtual const MuGrp | mean (RanIndex &grp, const Qgrp &q) const |
| Group weighted mean. More...
|
|
void | center () |
| Center the value matrix. More...
|
|
Single-SNP regression with conditional variance.
Implements single-marker GWAS. Each trait is treated separately for coefficient calculation. In contrast, the variance estimates are taken from the inverse-covariance: \( \widehat{\sigma}^2_p = \left[ \widehat{\boldsymbol{\Sigma}}^{-1}_{p,p} \right]^{-1} \le \widehat{\boldsymbol{\Sigma}}_{p,p} \). In addition to the single-trait tests an extra Hotelling-type mutivariate association test is performed. This multivariate test reflects the distance of the whole vector of trait effects to zero, potentially increasing the power to detect pleiotropic SNPs with moderate effects on mutiple traits. The saved value matrix thus has one extra column for this test. The output is either \( -\log_{10}p \), (although this statistic is not strictly a frequentist \(p\)-value, it performs very similarly in simulations), or Wakefield's [wakefield07] approximation of \( -ln BF \) (log-Bayes factor ratio). In the latter case, the user can set the prior variance manually. The SNP regression is performed on the point estimate of a response, as described in documentation of the update() and dump() functions. The latter can be, say, a residual of a mixed-model type GEBV estimate done to control population structure.