MuGen
Multitrait genetics
|
Data with measurement error. More...
#include <MuGen.h>
Public Member Functions | |
MuGrpEE () | |
Default constructor. | |
MuGrpEE (const string &datFlNam, const string &varFlNam, const string &indFlNam, RanIndex &up, const size_t &d) | |
Constructor with index read from a file. More... | |
MuGrpEE (const string &datFlNam, const string &varFlNam, const vector< size_t > &varInd, RanIndex &up, const size_t &d) | |
Constructor with index vector. More... | |
~MuGrpEE () | |
Destructor. | |
MuGrpEE (const MuGrpEE &mG) | |
Copy constructor. More... | |
MuGrpEE & | operator= (const MuGrpEE &mG) |
Assignment operator. More... | |
virtual void | update (const Grp &muPr, const SigmaI &SigIm) |
Gaussian prior. More... | |
virtual void | update (const Grp &muPr, const Qgrp &q, const SigmaI &SigIm) |
Student- \(t\) prior. More... | |
Public Member Functions inherited from MuGrp | |
MuGrp () | |
Default constructor. | |
MuGrp (RanIndex &low, const size_t &d) | |
Deterministic zero-value constructor. More... | |
MuGrp (const string &datFlNam, RanIndex &low, RanIndex &up, const size_t &d) | |
Constructor with data from file. More... | |
MuGrp (const string &datFlNam, RanIndex &up, const size_t &d) | |
Constructor with data from file and no lower level. More... | |
MuGrp (const vector< MVnorm * > &dat, RanIndex &low, RanIndex &up) | |
Constructor with a vector of MVnorm pointers. More... | |
MuGrp (const Grp &dat, RanIndex &low, RanIndex &up) | |
Constructor with a Grp object. More... | |
MuGrp (const vector< MVnorm * > &dat, RanIndex &low, RanIndex &up, const string &outFlNam) | |
Constructor with a vector of MVnorm pointers and output file name. More... | |
MuGrp (const Grp &dat, RanIndex &low, RanIndex &up, const string &outFlNam) | |
Constructor with a Grp object and output file name. More... | |
MuGrp (const Grp &dat, RanIndex &low) | |
Deterministic mean constructor. More... | |
MuGrp (const Grp &dat, const Qgrp &q, RanIndex &low) | |
Deterministic weighted mean constructor. More... | |
MuGrp (const gsl_matrix *dat) | |
Deterministic constructor with a GSL matrix. More... | |
MuGrp (const gsl_matrix *dat, RanIndex &low) | |
Deterministic GSL matrix mean constructor. More... | |
MuGrp (const gsl_matrix *dat, const Qgrp &q, RanIndex &low) | |
Deterministic GSL matrix weighted mean constructor. More... | |
virtual | ~MuGrp () |
Destructor. | |
MuGrp (const MuGrp &mG) | |
Copy constructor. More... | |
MuGrp (const Grp &g) | |
Copy constructor. More... | |
MuGrp & | operator= (const MuGrp &mG) |
Assignemnt operator. More... | |
virtual void | update (const Grp &dat, const SigmaI &SigIm, const SigmaI &SigIp) |
Gaussian likelihood, 0-mean Gaussian prior. More... | |
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const SigmaI &SigIp) |
Student- \(t\) likelihood, 0-mean Gaussian prior. More... | |
virtual void | update (const Grp &dat, const SigmaI &SigIm, const Qgrp &qPr, const SigmaI &SigIp) |
Gaussian likelihood, 0-mean Student- \(t\) prior. More... | |
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const Qgrp &qPr, const SigmaI &SigIp) |
Student- \(t\) likelihood, 0-mean Student- \(t\) prior. More... | |
virtual void | update (const Grp &dat, const SigmaI &SigIm, const Grp &muPr, const SigmaI &SigIp) |
Gaussian likelihood, non-zero mean Gaussian prior. More... | |
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const Grp &muPr, const SigmaI &SigIp) |
Student- \(t\) likelihood, non-zero mean Gaussian prior. More... | |
virtual void | update (const Grp &dat, const SigmaI &SigIm, const Grp &muPr, const Qgrp &qPr, const SigmaI &SigIp) |
Gaussian likelihood, non-zero mean Student- \(t\) prior. More... | |
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const Grp &muPr, const Qgrp &qPr, const SigmaI &SigIp) |
Student- \(t\) likelihood, non-zero mean Student- \(t\) prior. More... | |
Public Member Functions inherited from Grp | |
virtual | ~Grp () |
Destructor. | |
virtual void | save () |
Save to pre-specified file. More... | |
virtual void | save (const string &outFlNam) |
Save to file. More... | |
virtual void | save (const string &outMuFlNam, const string &outSigFlNam, const SigmaI &SigI) |
Joint save. More... | |
virtual void | save (const SigmaI &SigI) |
Save with inverse-covariance. More... | |
virtual void | save (const Grp &y, const SigmaI &SigI) |
Save with data and inverse-covariance. More... | |
void | mhlSave (const string &outFlNam, const SigmaI SigI) |
Save Mahalanobis distance. More... | |
virtual void | dump () |
Dump to a file. More... | |
const vector< MVnorm * > & | dataVec () const |
Get vector of row pointers. More... | |
virtual const gsl_matrix * | dMat () const |
Access the value matrix. More... | |
virtual const gsl_matrix * | fMat () const |
Access the value matrix. More... | |
const size_t | Ndata () const |
Get number of rows. More... | |
const size_t | phenD () const |
Get number of traits. More... | |
virtual double | lnOddsRat (const Grp &y, const SigmaI &SigI, const size_t i) const |
Log-odds ratio. More... | |
const MVnorm * | operator[] (const size_t i) const |
Subscript operator. More... | |
MVnorm * | operator[] (const size_t i) |
Subscript operator. More... | |
virtual MuGrp | mean (RanIndex &grp) |
Group mean. More... | |
virtual const MuGrp | mean (RanIndex &grp) const |
Group mean. More... | |
virtual MuGrp | mean (RanIndex &grp, const Qgrp &q) |
Group weighted mean. More... | |
virtual const MuGrp | mean (RanIndex &grp, const Qgrp &q) const |
Group weighted mean. More... | |
void | center () |
Center the value matrix. More... | |
Protected Attributes | |
gsl_matrix * | _errorInvVar |
Matrix of error inverse-variances. More... | |
gsl_matrix * | _meanVal |
Matrix of means. More... | |
vector< size_t > | _errInd |
Trait index. More... | |
Protected Attributes inherited from Grp | |
vector< MVnorm * > | _theta |
Vector of pointers to value rows. More... | |
gsl_matrix * | _valueMat |
Value matrix. More... | |
RanIndex * | _lowLevel |
Lower level index. More... | |
RanIndex * | _upLevel |
Upper level index. More... | |
vector< gsl_rng * > | _rV |
Vector of PNG pointers. More... | |
string | _outFlNam |
Name of the output file. | |
Additional Inherited Members | |
Protected Member Functions inherited from Grp | |
Grp () | |
Data with measurement error.
If some phenotypes are measured with known error (e.g., technical replicates that are not idividually available), these can be sampled rather than used as point estimates. A mix of traits with and without measurement error is allowed. This class has to be on the bottom of the model hierarchy.
MuGrpEE::MuGrpEE | ( | const string & | datFlNam, |
const string & | varFlNam, | ||
const string & | indFlNam, | ||
RanIndex & | up, | ||
const size_t & | d | ||
) |
Constructor with index read from a file.
The data, error variances and the index identifying traits with errors are read from files. The index file must be a white-space separated text file. Variances are inverted after reading and are checked for sanity (i.e. not smaller than machine epsilon).
[in] | string& | data file name |
[in] | string& | variance file name |
[in] | string& | index values file name |
[in] | RainIndex& | upper level (prior) index |
[in] | size_t& | number of traits |
MuGrpEE::MuGrpEE | ( | const string & | datFlNam, |
const string & | varFlNam, | ||
const vector< size_t > & | varInd, | ||
RanIndex & | up, | ||
const size_t & | d | ||
) |
Constructor with index vector.
The data and error variances are read from files, but the index identifying traits with errors is provided in a vector. Variances are inverted after reading and are checked for sanity (i.e. not smaller than machine epsilon).
[in] | string& | data file name |
[in] | string& | variance file name |
[in] | vector<size_t>& | index values file name |
[in] | RainIndex& | upper level (prior) index |
[in] | size_t& | number of traits |
MuGrpEE::MuGrpEE | ( | const MuGrpEE & | mG | ) |
|
protected |
Trait index.
Contains indexes of the traits that have measurment errors. Only one index for all rows, i.e. once a trait has measurment error all samples must have a non-zero error variance.
|
protected |
Matrix of error inverse-variances.
The matrix has the same number of rows as the value matrix, and the number of columns no larger than the value matrix. Variances are read from a file and inverted on initialization.
|
protected |
Matrix of means.
Has the same dimensions as the _errorVar matrix, and stores mean values for the variables that will be sampled.