MuGen
Multitrait genetics
|
Data with measurement error and missing phenotypes. More...
#include <MuGen.h>
Public Member Functions | |
MuGrpEEmiss () | |
Default constructor. | |
MuGrpEEmiss (const string &datFlNam, const string &varFlNam, const string &indFlNam, const string &misMatFlNam, const string &misVecFlNam, RanIndex &up, const size_t &d) | |
Constructor with index read from a file. More... | |
MuGrpEEmiss (const string &datFlNam, const string &varFlNam, const vector< size_t > &varInd, const string &misMatFlNam, const string &misVecFlNam, RanIndex &up, const size_t &d) | |
Constructor with index vector. More... | |
~MuGrpEEmiss () | |
Destructor. | |
MuGrpEEmiss (const MuGrpEEmiss &mG) | |
Copy constructor. More... | |
MuGrpEEmiss & | operator= (const MuGrpEEmiss &mG) |
Assignment operator. More... | |
void | update (const Grp &muPr, const SigmaI &SigIm) |
Standard Gaussian imputation. More... | |
void | update (const Grp &muPr, const Qgrp &q, const SigmaI &SigIm) |
Student- \(t\) likelihood, improper prior. More... | |
Public Member Functions inherited from MuGrpMiss | |
MuGrpMiss () | |
Default constructor. | |
MuGrpMiss (const string &datFlNam, const string &misMatFlNam, const string &misVecFlNam, RanIndex &up, const size_t &d) | |
Full constructor. More... | |
~MuGrpMiss () | |
Destructor. | |
MuGrpMiss (const MuGrpMiss &mG) | |
Copy constructor. More... | |
MuGrpMiss & | operator= (const MuGrpMiss &mG) |
Assignment operator. More... | |
virtual void | update (const Grp &mu, const SigmaI &SigIm, const SigmaI &SigIp) |
Gaussian imputation with a prior. More... | |
size_t | nMis () const |
size_t | nMis () |
Public Member Functions inherited from MuGrp | |
MuGrp () | |
Default constructor. | |
MuGrp (RanIndex &low, const size_t &d) | |
Deterministic zero-value constructor. More... | |
MuGrp (const string &datFlNam, RanIndex &low, RanIndex &up, const size_t &d) | |
Constructor with data from file. More... | |
MuGrp (const string &datFlNam, RanIndex &up, const size_t &d) | |
Constructor with data from file and no lower level. More... | |
MuGrp (const vector< MVnorm * > &dat, RanIndex &low, RanIndex &up) | |
Constructor with a vector of MVnorm pointers. More... | |
MuGrp (const Grp &dat, RanIndex &low, RanIndex &up) | |
Constructor with a Grp object. More... | |
MuGrp (const vector< MVnorm * > &dat, RanIndex &low, RanIndex &up, const string &outFlNam) | |
Constructor with a vector of MVnorm pointers and output file name. More... | |
MuGrp (const Grp &dat, RanIndex &low, RanIndex &up, const string &outFlNam) | |
Constructor with a Grp object and output file name. More... | |
MuGrp (const Grp &dat, RanIndex &low) | |
Deterministic mean constructor. More... | |
MuGrp (const Grp &dat, const Qgrp &q, RanIndex &low) | |
Deterministic weighted mean constructor. More... | |
MuGrp (const gsl_matrix *dat) | |
Deterministic constructor with a GSL matrix. More... | |
MuGrp (const gsl_matrix *dat, RanIndex &low) | |
Deterministic GSL matrix mean constructor. More... | |
MuGrp (const gsl_matrix *dat, const Qgrp &q, RanIndex &low) | |
Deterministic GSL matrix weighted mean constructor. More... | |
virtual | ~MuGrp () |
Destructor. | |
MuGrp (const MuGrp &mG) | |
Copy constructor. More... | |
MuGrp (const Grp &g) | |
Copy constructor. More... | |
MuGrp & | operator= (const MuGrp &mG) |
Assignemnt operator. More... | |
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const SigmaI &SigIp) |
Student- \(t\) likelihood, 0-mean Gaussian prior. More... | |
virtual void | update (const Grp &dat, const SigmaI &SigIm, const Qgrp &qPr, const SigmaI &SigIp) |
Gaussian likelihood, 0-mean Student- \(t\) prior. More... | |
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const Qgrp &qPr, const SigmaI &SigIp) |
Student- \(t\) likelihood, 0-mean Student- \(t\) prior. More... | |
virtual void | update (const Grp &dat, const SigmaI &SigIm, const Grp &muPr, const SigmaI &SigIp) |
Gaussian likelihood, non-zero mean Gaussian prior. More... | |
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const Grp &muPr, const SigmaI &SigIp) |
Student- \(t\) likelihood, non-zero mean Gaussian prior. More... | |
virtual void | update (const Grp &dat, const SigmaI &SigIm, const Grp &muPr, const Qgrp &qPr, const SigmaI &SigIp) |
Gaussian likelihood, non-zero mean Student- \(t\) prior. More... | |
virtual void | update (const Grp &dat, const Qgrp &q, const SigmaI &SigIm, const Grp &muPr, const Qgrp &qPr, const SigmaI &SigIp) |
Student- \(t\) likelihood, non-zero mean Student- \(t\) prior. More... | |
Public Member Functions inherited from Grp | |
virtual | ~Grp () |
Destructor. | |
virtual void | save () |
Save to pre-specified file. More... | |
virtual void | save (const string &outFlNam) |
Save to file. More... | |
virtual void | save (const string &outMuFlNam, const string &outSigFlNam, const SigmaI &SigI) |
Joint save. More... | |
virtual void | save (const SigmaI &SigI) |
Save with inverse-covariance. More... | |
virtual void | save (const Grp &y, const SigmaI &SigI) |
Save with data and inverse-covariance. More... | |
void | mhlSave (const string &outFlNam, const SigmaI SigI) |
Save Mahalanobis distance. More... | |
virtual void | dump () |
Dump to a file. More... | |
const vector< MVnorm * > & | dataVec () const |
Get vector of row pointers. More... | |
virtual const gsl_matrix * | dMat () const |
Access the value matrix. More... | |
virtual const gsl_matrix * | fMat () const |
Access the value matrix. More... | |
const size_t | Ndata () const |
Get number of rows. More... | |
const size_t | phenD () const |
Get number of traits. More... | |
virtual double | lnOddsRat (const Grp &y, const SigmaI &SigI, const size_t i) const |
Log-odds ratio. More... | |
const MVnorm * | operator[] (const size_t i) const |
Subscript operator. More... | |
MVnorm * | operator[] (const size_t i) |
Subscript operator. More... | |
virtual MuGrp | mean (RanIndex &grp) |
Group mean. More... | |
virtual const MuGrp | mean (RanIndex &grp) const |
Group mean. More... | |
virtual MuGrp | mean (RanIndex &grp, const Qgrp &q) |
Group weighted mean. More... | |
virtual const MuGrp | mean (RanIndex &grp, const Qgrp &q) const |
Group weighted mean. More... | |
void | center () |
Center the value matrix. More... | |
Protected Attributes | |
vector< list< double > > | _errorInvVar |
Measurement error inverse-variances. More... | |
vector< list< double > > | _meanVal |
Means for values with errors. More... | |
vector< list< size_t > > | _missErrMat |
Error index. More... | |
Protected Attributes inherited from MuGrpMiss | |
vector< size_t > | _misInd |
Index of the rows with missing data. | |
Protected Attributes inherited from Grp | |
vector< MVnorm * > | _theta |
Vector of pointers to value rows. More... | |
gsl_matrix * | _valueMat |
Value matrix. More... | |
RanIndex * | _lowLevel |
Lower level index. More... | |
RanIndex * | _upLevel |
Upper level index. More... | |
vector< gsl_rng * > | _rV |
Vector of PNG pointers. More... | |
string | _outFlNam |
Name of the output file. | |
Additional Inherited Members | |
Protected Member Functions inherited from Grp | |
Grp () | |
Data with measurement error and missing phenotypes.
Some traits have measurment errors, some (possibly an overlapping set) are missing. Sampling with error is done only for the present phenotypes, thus not all rows have the same number of traits with error variances.
MuGrpEEmiss::MuGrpEEmiss | ( | const string & | datFlNam, |
const string & | varFlNam, | ||
const string & | indFlNam, | ||
const string & | misMatFlNam, | ||
const string & | misVecFlNam, | ||
RanIndex & | up, | ||
const size_t & | d | ||
) |
Constructor with index read from a file.
The data, error variances and the index identifying traits with errors are read from files. The index file must be a white-space separated text file. The index is initially the same for each row, but then the values corresponding to missing phenotypes are dropped for relevant rows.
[in] | string& | data file name |
[in] | string& | variance file name |
[in] | string& | index values file name |
[in] | string& | matrix missing data index file name |
[in] | string& | vector missing data index file name |
[in] | RainIndex& | upper level (prior) index |
[in] | size_t& | number of traits |
MuGrpEEmiss::MuGrpEEmiss | ( | const string & | datFlNam, |
const string & | varFlNam, | ||
const vector< size_t > & | varInd, | ||
const string & | misMatFlNam, | ||
const string & | misVecFlNam, | ||
RanIndex & | up, | ||
const size_t & | d | ||
) |
Constructor with index vector.
The data and error variances are read from files, but the index identifying traits with errors is provided in a vector. The index is initially the same for each row, but then the values corresponding to missing phenotypes are dropped for relevant rows.
[in] | string& | data file name |
[in] | string& | variance file name |
[in] | vector<size_t>& | index values |
[in] | string& | matrix missing data index file name |
[in] | string& | vector missing data index file name |
[in] | RainIndex& | upper level (prior) index |
[in] | size_t& | number of traits |
MuGrpEEmiss::MuGrpEEmiss | ( | const MuGrpEEmiss & | mG | ) |
MuGrpEEmiss & MuGrpEEmiss::operator= | ( | const MuGrpEEmiss & | mG | ) |
Assignment operator.
[in] | MuGrpEEmiss& | object to be copied |
Student- \(t\) likelihood, improper prior.
[in] | Grp& | data |
[in] | Qgrp& | Student- \(t\) weight parameter for data |
[in] | SigmaI& | data inverse-covariance |
Reimplemented from MuGrp.
Standard Gaussian imputation.
If some data are present, performs standard Gaussian marginal imputation (desribed in, e.g., [chatfield80] ) with the provided Grp object as a mean and the SigmaI object as the inverse-covariance. If no data for a row are present, simply replaces the row values by a Gaussian sample with mean and inverse-covariance provided. Rows with no missing data are ignored.
[in] | Grp& | mean |
[in] | SigmaI& | inverse-covariance |
Reimplemented from MuGrpMiss.
|
protected |
Measurement error inverse-variances.
The same configuration as the variance vector of lists. This is the subset of _valueMat that corresponds to the values to be updated with experimental error.
|
protected |
Means for values with errors.
The length of the vector is equal to the number of rows of the value matrix. For each row, the error variances are in a list that has as many members as there are non-missing phenotypes with errors.
|
protected |
Error index.
The same configuration as the variance vector of lists, but containing indexes of the elements of the value matrix that have measurement errors.